首页> 外文OA文献 >An analogue of grad-div stabilization in nonconforming methods for incompressible flows
【2h】

An analogue of grad-div stabilization in nonconforming methods for incompressible flows

机译:非符合方法中梯度稳定的类比   不可压缩的流量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grad-div stabilization is a classical remedy in conforming mixed finiteelement methods for incompressible flow problems, for mitigating velocityerrors that are sometimes called poor mass conservation. Such errors arise dueto the relaxation of the divergence constraint in classical mixed methods, andare excited whenever the spacial discretization has to deal with comparablylarge and complicated pressures. In this contribution, an analogue of grad-divstabilization is presented for nonconforming flow discretizations ofDiscontinuous Galerkin or nonconforming finite element type. Here the key isthe penalization of the jumps of the normal velocities over facets of thetriangulation, which controls the measure-valued part of the distributionaldivergence of the discrete velocity solution. Furthermore, we characterize thelimit for arbitrarily large penalization parameters, which shows that theproposed nonconforming Discontinuous Galerkin methods remain robust andaccurate in this limit. Several numerical examples illustrate the theory andshow their relevance for the simulation of practical, nontrivial flows.
机译:对于不可压缩的流动问题,Grad-div稳定化是一种采用混合有限元方法的经典补救方法,可以缓解有时被称为不良质量守恒性的速度误差。这些误差是由于经典混合方法中发散约束的放松而引起的,每当空间离散化必须处理相对较大和复杂的压力时,都会引起这种错误。在这一贡献中,为不连续的Galerkin或不合格有限元类型的不合格流动离散化提供了梯度可​​分解的类似物。在这里,关键是对三角剖分面上法向速度跳跃的惩罚,它控制离散速度解的分布散度的量度值部分。此外,我们刻画了任意大的惩罚参数的极限,这表明所提出的不合格不连续伽勒金方法在该极限下仍保持鲁棒性和准确性。几个数值示例说明了该理论,并显示了它们与模拟实际,平凡的流动的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号